• Skip to primary navigation
  • Skip to main content
  • Home
  • People
    • Professor
    • Postdoctoral Researcher
    • PhD Students
    • MS Students
    • Undergraduate Students
    • Visiting Scholar
    • Alumni
  • Research
    • Multiscale Modeling
      • Accelerated Heterogeneous Catalysis
      • Crystallization
      • Microwave Reactor Modeling
      • Paper Manufacturing
      • Lignocellulosic Biomass Fractionation
    • Hybrid Modeling
      • Hybrid Modeling of Chemical Processes
      • Application of Hybrid Modeling to Fermentation Processes
    • Data Science & Machine Learning
      • Data-driven Adaptive Modeling
      • Control Beyond the Training Domains
      • Battery Modeling and Monitoring
      • Fault Prognosis using Data-driven Adaptive Models
      • Machine Learning-Enhanced Crystallization
      • Model Reduction
    • Drug Discovery
      • Transformer-Driven ADMET Screening for Efficient Drug Evaluation
      • Latent Space Optimization for Molecular Design
      • Hybrid PBPK Modeling with Transformer-Based Pharmacokinetic Predictions
    • Molecular Dynamics Modeling
      • DFT-kMC-LSTM Energy Materials
      • Cellular Biochemical Reaction Pathways
      • Supramolecular Assemblies
    • Hydraulic Fracturing
      • Hydraulic Fracturing for Enhanced Productivity
      • Wastewater and Shale Gas
  • Publications
  • Presentations
  • Recent News
  • Location
  • Gallery

Kwon Research Group

Texas A&M University College of Engineering

Optimal Pumping Schedule Design to Achieve A Uniform Proppant Concentration Level in Hydraulic Fracturing

We present a novel design framework of an optimal and practical pumping schedule to achieve uniform proppant concentration across fracture at the end of pumping. By using the average viscosity to approximate concentration dependence of fracture propagation, a set of constant-concentration pumping schedules is applied to the developed dynamic model, each of which is carefully chosen by taking into account the practical constraints such as the limit on the change of proppant concentration between pumping stages and the desired fracture geometry that has to be satisfied at the end of pumping for maximum productivity. Then, a practically-feasible target concentration profile is obtained via linear combinations of the generated spatial concentration profiles, and mass balance is applied to the practically-feasible target concentration to calculate the duration of each pumping stage. We apply the generated pumping schedule to the high-fidelity hydraulic fracturing model, and the performance is compared with Nolte’s pumping schedule.

© 2016–2025 Kwon Research Group Log in

Texas A&M Engineering Experiment Station Logo
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment