• Skip to primary navigation
  • Skip to main content
  • Home
  • People
    • Professor
    • Postdoctoral Researcher
    • PhD Students
    • MS Students
    • Undergraduate Students
    • Visiting Scholar
    • Alumni
  • Research
    • Multiscale Modeling
      • Accelerated Heterogeneous Catalysis
      • Crystallization
      • Microwave Reactor Modeling
      • Paper Manufacturing
      • Lignocellulosic Biomass Fractionation
    • Hybrid Modeling
      • Hybrid Modeling of Chemical Processes
      • Application of Hybrid Modeling to Fermentation Processes
    • Data Science & Machine Learning
      • Data-driven Adaptive Modeling
      • Control Beyond the Training Domains
      • Battery Modeling and Monitoring
      • Fault Prognosis using Data-driven Adaptive Models
      • Machine Learning-Enhanced Crystallization
      • Model Reduction
    • Drug Discovery
      • Transformer-Driven ADMET Screening for Efficient Drug Evaluation
      • Latent Space Optimization for Molecular Design
      • Hybrid PBPK Modeling with Transformer-Based Pharmacokinetic Predictions
    • Molecular Dynamics Modeling
      • DFT-kMC-LSTM Energy Materials
      • Cellular Biochemical Reaction Pathways
      • Supramolecular Assemblies
    • Hydraulic Fracturing
      • Hydraulic Fracturing for Enhanced Productivity
      • Wastewater and Shale Gas
  • Publications
  • Presentations
  • Recent News
  • Location
  • Gallery

Kwon Research Group

Texas A&M University College of Engineering

Control Beyond the Training Domains

 

Effective process control is crucial, both within and outside the training regions. Chemical processes can often undergo changes in their operating targets due to several factors, including modified product quality, new product design, business demands, and process economics. Such scenarios can require controlling the process at completely new operating conditions outside the training region of the existing model. However, data-driven models usually fail to extrapolate beyond their training domains, thus restricting their applicability only to their training regions. Developing another model for the new operating scenarios is not a trivial task due to the unavailability of historical process data. Because of this, implementing data-driven process control in new operating settings outside the training region remains a major challenge. Motivated by this challenge, developing a systematic approach to control a process outside the training region of its model is an interesting direction. Accordingly, the adaptation capabilities of OASIS together with a state estimator can be useful in effectively controlling a process in new operation domains.

© 2016–2025 Kwon Research Group Log in

Texas A&M Engineering Experiment Station Logo
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment