• Skip to primary navigation
  • Skip to main content
  • Home
  • People
    • Professor
    • Postdoctoral Researcher
    • PhD Students
    • MS Students
    • Undergraduate Students
    • Visiting Scholar
    • Alumni
  • Research
    • Multiscale Modeling
      • Accelerated Heterogeneous Catalysis
      • Crystallization
      • Microwave Reactor Modeling
      • Paper Manufacturing
      • Lignocellulosic Biomass Fractionation
    • Hybrid Modeling
      • Hybrid Modeling of Chemical Processes
      • Application of Hybrid Modeling to Fermentation Processes
    • Data Science & Machine Learning
      • Data-driven Adaptive Modeling
      • Control Beyond the Training Domains
      • Battery Modeling and Monitoring
      • Fault Prognosis using Data-driven Adaptive Models
      • Machine Learning-Enhanced Crystallization
      • Model Reduction
    • Drug Discovery
      • Transformer-Driven ADMET Screening for Efficient Drug Evaluation
      • Latent Space Optimization for Molecular Design
      • Hybrid PBPK Modeling with Transformer-Based Pharmacokinetic Predictions
    • Molecular Dynamics Modeling
      • DFT-kMC-LSTM Energy Materials
      • Cellular Biochemical Reaction Pathways
      • Supramolecular Assemblies
    • Hydraulic Fracturing
      • Hydraulic Fracturing for Enhanced Productivity
      • Wastewater and Shale Gas
  • Publications
  • Presentations
  • Recent News
  • Location
  • Gallery

Kwon Research Group

Texas A&M University College of Engineering

Application of Hybrid Modeling to Fermentation Processes

Kinetic modeling of fermentation processes is challenging due to complex micro-organism reactions and incomplete system knowledge. We have developed a hybrid modeling approach that combines kinetic and data-based models to improve accuracy and robustness. By integrating a deep neural network (DNN) with the kinetic model, we predict uncertain parameters and capture time-varying dependencies. The developed model is tested against an industrial-scale fermenter with a capacity of over 100,000 gallons. In the chemical industry, digital twins and optimal control algorithms are important for profitability. To overcome the challenges of limited sensors and infrequent measurements, we design a multi-rate state observer and a model predictive controller (MPC) for an industry-scale fermentation process to optimize input profiles and enhance productivity while considering process constraints.

Literature:

Shah, P., Sheriff, M. Z., Bangi, M. S. F., Kravaris, C., Kwon, J. S. I., Botre, C., & Hirota, J. (2023). Multi‐rate observer design and optimal control to maximize productivity of an industry‐scale fermentation process. AIChE Journal, 69(2), e17946.

Shah, P., Sheriff, M. Z., Bangi, M. S. F., Kravaris, C., Kwon, J. S. I., Botre, C., & Hirota, J. (2022). Deep neural network-based hybrid modeling and experimental validation for an industry-scale fermentation process: Identification of time-varying dependencies among parameters. Chemical Engineering Journal, 441, 135643.

© 2016–2025 Kwon Research Group Log in

Texas A&M Engineering Experiment Station Logo
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment